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ABSTRACT

Objective: The aim of this study was to test the feasibility of PICO (participants, interventions, comparators,

outcomes) entity extraction using weak supervision and natural language processing.

Methodology: We re-purpose more than 127 medical and nonmedical ontologies and expert-generated rules to

obtain multiple noisy labels for PICO entities in the evidence-based medicine (EBM)-PICO corpus. These noisy

labels are aggregated using simple majority voting and generative modeling to get consensus labels. The

resulting probabilistic labels are used as weak signals to train a weakly supervised (WS) discriminative model

and observe performance changes. We explore mistakes in the EBM-PICO that could have led to inaccurate

evaluation of previous automation methods.

Results: In total, 4081 randomized clinical trials were weakly labeled to train the WS models and compared

against full supervision. The models were separately trained for PICO entities and evaluated on the EBM-PICO

test set. A WS approach combining ontologies and expert-generated rules outperformed full supervision for the

participant entity by 1.71% macro-F1. Error analysis on the EBM-PICO subset revealed 18–23% erroneous token

classifications.

Discussion: Automatic PICO entity extraction accelerates the writing of clinical systematic reviews that commonly

use PICO information to filter health evidence. However, PICO extends to more entities—PICOS (S—study type and

design), PICOC (C—context), and PICOT (T—timeframe) for which labelled datasets are unavailable. In such cases,

the ability to use weak supervision overcomes the expensive annotation bottleneck.

Conclusions: We show the feasibility of WS PICO entity extraction using freely available ontologies and heuristics

without manually annotated data. Weak supervision has encouraging performance compared to full supervision

but requires careful design to outperform it.
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INTRODUCTION

Systematic reviews (SR) are an evidence-based practice of answering

clinical questions using a transparent and quantitative approach. The

reviewers must collect as many candidate publications as possible, iden-

tify the relevant publications, and integrate their results via statistical

meta-analysis. A clinical SR question is typically formulated using the

PICO (participants, interventions, comparators, outcomes) framework,

for example, “Will aerobic exercise (Intervention) improve fatigue

(Outcome) in cancer patients (Participant) compared to usual care

(Comparator)?.” A publication is only relevant for answering a

question if it studies the selected participants, interventions (and their

comparators), and outcomes.1 Manually analyzing PICO information

from thousands of publications for a single SR often takes 2–8 months

of 2 medical experts’ time.2 It can be automated using machine learn-

ing (ML) by directly pointing the human reviewers to the PICO

descriptions, facilitating quick decision-making for the study’s rele-

vance.

Supervised ML requires hand-labeled data, but hand-labelling

data with PICO information require people with combined medical

and informatics skills, which is expensive and time-consuming in

terms of intensive annotator training and the actual annotation

process. Labelling PICO information is tricky because of the high

disagreement between human annotators on the exact spans consti-

tuting PICO, leading to human errors in hand-labeled corpora.3

Some studies examine the errors in the publicly available evidence-

based medicine (EBM)-PICO benchmark.4–6 More importantly,

depending upon the SR question, PICO criteria are extended to

PICOS (S—study design), PICOC (C—context), PIBOSO (B—back-

ground, O—other), and PICOT (T—timeframe).1,7,8 Hand-labeled

datasets are static and prohibit quick manual re-labelling in case of

human errors or when a downstream task requires new entities.

This annotation bottleneck has pivoted attention toward weakly

supervised (WS) learning that relies on programmatic labelling sour-

ces to obtain training data. Programmatic labelling is quick and

allows efficient modifications to the training data labels per the

downstream application changes.

WS learning has demonstrated strengths for clinical document

classification and relation extraction, but clinical entity extraction

tasks have heavily relied on fully supervised (FS) approaches.9–14

Despite the availability of Unified Medical Language System

(UMLS), a large compendium of medical ontologies, which can be

re-purposed for weak entity labelling, it has not been extensively

applied to clinical entity labelling.15 Several legacy clinical applica-

tions are also supported by rule-based if-else systems relying on key-

word cues that aid weak labelling.16–18 With so many weak

labelling sources available, the challenge for weak supervision is effi-

ciently aggregating these sources of varying accuracy. Compare this

to crowdsourcing, where an important task is to model the worker’s

accuracy without the ground truth.19 Though crowdsourcing

requires annotator training and quality control, programmatic label-

ling does not.20

Data programming is a domain-agnostic generative modeling

approach combining multiple weak labelling sources and estimating

their accuracies. The effectiveness of data programming for biomed-

ical entity recognition has been explored by Fries et al21 in their

Trove system. However, Trove only explores well-defined entities

like chemical, disease, disorder, and drug. PICO categories are

highly compositional spans by definition, fuzzier in comparison and

much more intricate in that they can be divided into subclasses. A

shortcoming of span extraction is that even after a machine points a

human reviewer to the correct PICO span, the reviewer requires to

manually read and understand its finer aspects to screen the study

for relevance. Span extraction hence leads to semiautomation but

hinders full-automation. The entity recognition approach to PICO is

not as easy as the entity recognition approach to disease or chemical

names, which are more or less standardized. PICO terms are not

standard, and even the experts disagree on the exact tokens consti-

tuting them.3 WS PICO entity recognition has not garnered as much

attention as supervised span recognition. As far as our knowledge

goes, only 2 studies exist for WS PICO recognition. One of these

approaches only explores distant supervision for intervention

extraction using a single labelling source.22 The other approach

studies weak supervision for PICO span extraction but still utilizes

some supervised annotation signals about whether a sentence

includes PICO information.23

The challenges to developing weak supervision approaches to

PICO entity recognition are first defining the subclasses within

PICO spans and then mapping several available ontologies and ter-

minologies to these. The next challenge is developing WS classifiers

by optimally combining ontologies and evaluating their performance

LAY SUMMARY

Systematic reviews are clinical summaries, incredibly resource-consuming to produce and involve redundant document fil-

tering processes that machine learning could automate. Manual PICO (participant, intervention, comparator, outcome) infor-

mation analysis aids document filtering but is one of the most resource-intensive stages for writing systematic reviews.

Supervised machine learning based PICO information extraction could accelerate document filtering but requires massive

hand-labelled datasets for training. We propose a weak supervision approach that uses more than 127 freely available

vocabularies and expert-designed rules to label 4081 documents in evidence-based medicine (EBM)-PICO dataset with PICO

information. Powerful pretrained transformer models were fine-tuned for PICO extraction using these programmatically

labelled documents and compared to the results using expensive hand-labelled EBM-PICO documents. The token-level

macro-F1 score was used to compare full supervision and weak supervision. We also examined the errors in the EBM-PICO

training data and rectified them in the EBM-PICO test set. The weak supervision approach had promising results overall and

had a better F1 score than full supervision for the participant information, albeit it required a careful design. We further rec-

tify the errors made by weak supervision and intend to improve the methodology. Finally, adopting weak supervision for

highly compositional PICO information is challenging but feasible and extensible to more clinical entities.
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compared to full supervision. Another challenge is developing

higher-cost expert-generated rules corresponding to these subclasses

to aid ontology classifiers and evaluate their combined performance.

We also identified limitations in the currently available EBM-PICO

training dataset and corrected them in the EBM-PICO test set for

reliable evaluation of the WS approaches. Our work demonstrates

the feasibility of using weak supervision for PICO entity extraction

using the EBM-PICO benchmark and shows how weak supervision

overtakes full supervision in certain instances.

METHODOLOGY

The birds-eye view of our approach is shown in Figure 1.

Datasets
EBM-PICO is a widely used dataset with multi-level PICO annota-

tions: span-level or coarse-grained and entity-level or fine-grained

(refer to Table 1). Span-level annotations encompass the maximum

information about each class. Entity-level annotations cover the more

fine-grained information at the entity level, with PICO classes further

divided into semantic subclasses. The dataset comes predivided into a

training set (n¼4933) annotated through crowd-sourcing and an

expert annotated gold test set (n¼191) for evaluation.4 The EBM-

PICO annotation guidelines caution about variable annotation quality

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174533/bin/NIHM

S988059-supplement-Appendix.pdf). Abaho et al5 developed a frame-

work to post hoc correct EBM-PICO outcomes annotation inconsis-

tencies. Lee and Sun6 studied annotation span disagreements

suggesting variability across the annotators. Low annotation quality

in the training dataset is excusable, but the errors in the test set can

lead to faulty evaluation of the downstream ML methods. We evalu-

ate �1% of the EBM-PICO training set tokens to gauge the possible

reasons for the fine-grained labelling errors and use this exercise to

conduct an error-focused PICO re-annotation for the EBM-PICO

gold test set. The dataset is pretokenized and did not require addi-

tional preprocessing except the addition of POS tags and token lemma

using spaCy (https://spacy.io/). Multi-class fine-grained PICO annota-

tions were binarized, that is, a token label was reset to 1 if the token

represented a fine-grained entity.

Binary token labelling
Automatic PICO entity labelling is a classical binary token labelling

problem whereby a function maps an input sequence of n text tokens,

X ¼ ðx1; x2; . . . ; xnÞ to output sequence Y ¼ ðy1; y2; . . . ; ynÞ, where

yi � y; y ¼ f1; 0g is the label for token xi. In weak supervision, Y is

latent and should be estimated by aggregating several weak labelers of

variable accuracy. The estimates bY of Y are assigned as probabilistic

token labels of X leading to a weakly labelled dataset that can be used

to train discriminative models.

Labelling functions
In a binary token labelling task, a labelling function (LF) is a weak

classifier k that uses domain-specific labelling sources S and a logic

to emit token labels ~Yi with labels ~yi 2 f�1; 0;þ1g for a subset of

input Xi tokens. An LF designed for a particular target class t 2 T

(here; T � fparticipant, intervention, outcomeg) should output 1

for the positive token label, 0 for the negative token label, and

abstain (�1) on the tokens where it is uncertain k 7!f�1; 0;þ1g.
We designed 3 LF types depending on the types of labelling sources.

(1) The ontology or dictionary LFs for a target class take a diction-

ary of terminologies mapped to one of y � f0;þ1g token labels.

Any LF using ontologies or dictionaries used string matching as the

labelling heuristic. Relevant bigram word co-occurrences were used

to account for fuzzy span matching from the terminologies. A

bigram was considered relevant for a vocabulary if it occurred �25

Figure 1. Weak PICO entity extraction approach. (I.) Multi-class labels in the EBM-PICO benchmark are binarized. (II.) Low-cost UMLS vocabularies are re-pur-

posed as labelling sources and experts design rules as high-cost labelling sources. (III.) Labelling functions map the training sequences to class labels using label-

ling sources resulting in an m � n label matrix. (IV. and V.) The label matrix is used to train a generative model that outputs probabilistic labels that a

downstream transformer model can use for entity recognition.

Table 1. P (participant), I (intervention), and O (outcome) represent

the coarse-grained labels that are further divided into respective

fine-grained labels

P I/C O

0 No label No label No label

1 Age Surgical Physical

2 Sex Physical Pain

3 Sample size Drug Mortality

4 Condition Educational Side effect

5 Psychological Mental

6 Other Other

7 Control

Note: The table is taken from Nye et al4

JAMIA Open, 2023, Vol. 6, No. 1 3

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174533/bin/NIHMS988059-supplement-Appendix.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174533/bin/NIHMS988059-supplement-Appendix.pdf
https://spacy.io/


times in that vocabulary. (2) A regular expression (ReGeX) LF for a

target class takes regex patterns for f0;þ1g labels and abstains from

the rest. (3) A heuristic LF is personalized for each target class and

takes a generic regex pattern and specific part-of-speech (POS) tag

signals. Abbreviations in clinical studies are considered using a heu-

ristics abbreviation identifier, and the identified abbreviations were

mapped to their respective target classes. Stopwords from Natural

Language Toolkit (NLTK) (https://www.nltk.org), spaCy, Gensim

(https://radimrehurek.com/gensim/), and scikit learn (https://scikit-

learn.org) were used to initialize negative token label templates.

Labelling sources
This section describes the labelling sources S used and their mapping

to the PICO targets T. We used the 2021AB-full release of the

UMLS Metathesaurus English subset with 223 vocabularies. After

removing non-English and zoonotic vocabularies and the vocabula-

ries containing fewer than 500 terms, we remained with 127 vocab-

ularies.15 Terms in the selected vocabularies were preprocessed by

removing stopwords, numbers, and punctuation. Additional vocab-

ularies included disease ontology; human phenotype ontology;

ontology of adverse events; chemical entities of biological interest;

comparative toxicogenomics database chemical and disease sub-

classes; clinical trials ontology; gender, sex, and sexual orientation

ontology; chemotherapy toxicities ontology; cancer care: treatment

outcomes ontology; symptoms ontology; nonpharmacological inter-

ventions ontology; and nursing care coordination ontology.24–34

ReGeX and heuristics like POS tag cues were used to capture recur-

ring class-specific patterns otherwise not captured by standardized

terminologies. Vocabularies are structured, standardized data sour-

ces that do not capture writing variations from clinical literature

and custom-built ReGeX are restricted by either task or entity

type.35,36 We used distant supervision dictionaries created from the

structured fields of clinicaltrials.gov (CTO) as described by Dhran-

gadhariya and Müller22 Principal investigators of the clinical study

manually enter data in CTO, thereby incorporating large-scale writ-

ing variations.37

Sources to targets
Along with the source S and the logic to map Si to token labels, an

LF needs information about which target Ti label and binary token

class to map the source. We report how the LF sources were mapped

to PICO targets in this section. UMLS 2021AB-full release contains

16 543 671 concept names, making direct concept to PICO target

mapping impractical. These concepts are organized under semantic

type categories (eg, disease, sign and symptoms, and age group)

(https://www.nlm.nih.gov/research/umls/META3_current_seman-

tic_types.html), which allows mapping these semantic categories to

PICO targets, invariably mapping the concepts from the vocabula-

ries to target classes.37 It is a challenging expert-led activity, though

decomposing PICO into subclasses greatly helps map sources to tar-

get. A semantic category was marked 1 to represent a positive token

label for that target class or 0 to represent a negative token label for

that target class. Non-UMLS vocabularies were obtained from

NCBO bioportal (https://bioportal.bioontology.org/) and were

chosen to be PICO target specific and assigned to a single label.

Target-specific distant supervision dictionaries were created from

the structured fields of clinicaltrials.gov (CTO). The structured field

“condition or disease” was mapped to the participant target, and

the “intervention/treatment” field was mapped to the intervention

target. The semistructured “primary outcome measures” and

“secondary outcome measures” fields were mapped to the outcome

target. The hand-coded dictionaries were designed using the official

websites listing patient-reported outcome (PROMs) questionnaires

(https://www.thoracic.org/members/assemblies/assemblies/bshsr/pati

ent-outcome/) and PROMs (https://www.safetyandquality.gov.au/

our-work/indicators-measurement-and-reporting/patient-reported-ou

tcomes/proms-lists). Other hand-crafted dictionaries were separately

designed for participant gender and sexuality, intervention compara-

tor terms.

LF aggregation
Depending upon the number of sources S for each T, we had several

LFs. Each LF ki 2 Km; K ¼ fk1; k2; . . . ; kmg maps a subset of

inputs Xn to output sequence ~Y
n

with labels ~y 2 �1;0;þ1f yielding

a label matrix k � �1;0;þ1m�nf . The weakly generated labels

might have conflicts and overlaps and are generally noisy. The LFs

can be ensembled using the majority vote (MV) rule, where a token

label is elected only when a majority of ki vote for it. Ties and

abstains lead to the selection of the majority label.

bY MV ¼ max
y� 0;1f g

Xm
i¼1

1 ki ¼ yið Þ: (1)

However, MV considers each LF as conditionally independent

and does not consider the variable accuracies of different labelling

sources weighing them equally. Snorkel implements data program-

ming paradigm into the label model (LM) that re-weights and aggre-

gates LFs into probabilistic labels byi. To do this, the LM trains a

generative model P K;Yð Þ to estimate LF accuracies hj using stochas-

tic gradient descent to minimize log loss in the absence of labelled

data.35,38 Although the ground truth is not observable to estimate

accuracies; they can be estimated using observed agreement and dis-

agreement rates between LF pairs ki, kj in K. Generative modeling

ultimately results into token label probabilities bY for label classes

0;1f . GridSearch was used to fine-tune the parameters of the LM

using the hand-labeled validation set from the EBM-PICO. The

parameters are listed in the Experimental details section of the Sup-

plementary Material. Once we have the pseudo-labels generated by

majority voting or the LM, these could be used to train a discrimina-

tive model.

bh ¼ argmin
h

�log
X

Y

ph K; Yð Þ
 !

: (2)

Experiments
The LFs km were used to label the EBM-PICO training set and obtain

k. We tested MV and LM to aggregate LFs. LM output probabilistic

labels for the training set were used as weak supervision signals to train

downstream PubMedBERT to minimize noise-aware cross-entropy

loss. PubMedBERT was trained on PubMed literature and was chosen

because of its domain similarity to our training data (PubMed

abstracts) and task.39 It was tuned on fixed parameters listed in the

experimental details section in the Supplementary Material.

bx ¼ argmin
x

1

N

Xn

i¼1

Eŷ�Ŷ l f x;xð Þ; byð Þ½ � (3)

UMLS ontologies are readily available sources of weak supervision,

while searching the non-UMLS ontologies requires an additional effort

and understanding of the target class and domain. On the contrary,

designing the rules requires understanding the idiosyncratic clinical pat-
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terns for the target classes. Therefore, we experiment and report results

on 3 “expense” tiers to gauge the performance changes: (1) UMLS

labelling sources, (2) UMLS and non-UMLS labelling sources, and (3)

UMLS, non-UMLS and expert-generated rules. We test label aggrega-

tion via MV and LM along with WS PubMedBERT for the above tiers.

The WS experiments were compared against a competitive FS Pub-

MedBERT trained using the hand-labeled EBM-PICO training set. For

all the experiments, 80% of the EBM-PICO dataset was used for

training and 20% for validation.

UMLS ontologies were ranked based on the total number of n-

gram overlaps between the respective terminology and the EBM-PICO

validation set. These were then partitioned into 127 partitions

s ¼ 1; 2; . . . ; 127ð Þ, where the first partition combined the entire

UMLS into a single LF and was used as the baseline. The last partition

kept all the terminologies as separate LFs.

Partition-wise performance over the validation set was tracked.

Evaluation
We report the classical macro-averaged F1 and recall for MV, LM,

and WS transformer models and the FS PubMedBERT models.

Token-level macro-F1 was chosen to make it comparable to the

PICO extraction literature. Mean macro-averaged scores are

reported over 3 runs of each model, with the top 3 random seeds (0,

1, and 42) used in Python. The models were separately trained for

each target class recognition task using the raw (inside, out) tagging

scheme. We used Student’s t-test with an alpha a threshold of 0.05

to measure the statistical significance.

RESULTS

PICO decomposition
We extended the EBM-PICO subclasses (refer to Table 1) to better

query the labelling sources and design LFs (see Figure 2). For a more

comprehensive subgrouping, we propose developing a PICO ontol-

ogy.40 It is more straightforward to search for ontologies representing

adverse events or diseases rather than fending for an ontology describ-

ing the entire participant or outcome spans. It is easier to grasp cues

separately for outcome terms and instruments of outcome measure-

ment to develop heuristics. The intervention span can include the inter-

vention name, role (primary intervention or comparator), dosage,

frequency, mode of administration, and administrator. The outcome

span can include the outcome names, the scales, techniques or instru-

Figure 2. Hierarchical representation of PICO subclasses. The categories marked in bold–italic are the same as the fine-grained categories in the EBM-PICO corpus.
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ments used to measure them, and the absolute outcome measurement

values. The EBM-natural language processing guidelines restrict anno-

tating the outcome name, how it was measured, and the intervention’s

name and role (control, placebo), leaving out the other subclasses.

Error rectification
We rectified the errors in the EBM-PICO validation set and catego-

rized them for each PIO class, as shown in Table 2. Of 12 960

(�1% of 1 303 169) training tokens evaluated to gauge the errors,

18.30% of the intervention class tokens, 23.39% of the participant

class tokens, and 20.21% of the outcome class tokens were errors.

These error categories are elaborated in the Supplementary Mate-

rial. The error analysis was used to correct fine-grained annotation

errors in the EBM-PICO test set, and both the EBM-PICO and its

updated version were used for evaluation. We were constrained

with obtaining multiple annotators for the re-annotation to calcu-

late inter-annotator agreement. Therefore, we calculated Cohen’s

jnew between the original EBM-PICO gold set and our re-

annotation over 200 documents and compared it to Cohen’s j (see

Figure 3) provided by the authors of the original corpus.4

Table 3 reports macro-averaged F1 for the experiments detailed

in the experiments section compared to the FS approach. Error recti-

fication leads to an overall average F1 improvement of 4.88% across

the experiments using a weakly labeled training set with the highest

average improvement of 8.25% (7.15–9.52%) for participants and

2.68% (�0.11% to 4.28%) for outcomes. For the participant class,

both the LM and the WS F1 scores increase the full supervision score

by 0.90–1.71%. It has to be noticed that weak supervision outper-

forms full supervision on the rectified benchmark only for the partic-

ipant entity.

MV versus LM versus WS

The LM improved the average performance by 2.74% (0.17–5.83%)

compared to majority voting. However, PubMedBERT did not guar-

antee improved performance across the targets leading to perform-

ance drops between 0.4 and 2.56%. Though the WS PubMedBERT

models did not always improve the performance compared to their

LM counterparts, they had the best F1 score for each target class.

The majority voting had higher recall across experiments compared

to precision, while LM focused on precision (see Figure 4), making it

a possible choice for recall-oriented PICO extraction tasks.

LF tiers

Adding non-UMLS LFs to the UMLS tier increases performance for

the intervention target by an average of 4.48% but leads to perform-

ance drops for the participants and outcomes targets by 0.36% and

0.64%, respectively. Adding task-specific LFs increased the overall

F1 by a negligible 0.98%. Heuristics improved performance for the

interventions LM by 11.1%.

UMLS partitions

To investigate the optimal number of UMLS LFs required, we used

the same methodology as in Trove, holding all non-UMLS and heu-

ristics LFs fixed across all ablation tiers and computed performance

across s ¼ 1; 2; . . . ; 127ð Þ partitions of the UMLS terminology.

We noticed an increased performance for the first few partitions.

However, we did not see the performance drop with a further

increase in the participant and intervention target partition number.

Partitions with more than 100 LFs performed better. This situation

contrasts with Trove, where an increase in partitions leads to a drop

in performance across targets (see Figure 5). For the outcomes tar-

get, an increase in the number of partitions leads to an increased per-

formance initially but a drop with a further increase in the partition

numbers. LM outperforms MV on training performance across the

2 targets and experiments except for the intervention target, where

the MV model combining UMLS and additional ontologies outper-

forms LM. The simple baseline collapsing UMLS into a single LF

usually did not perform better than the others in UMLS partitions

for any of the 3 experiment tiers (refer to the #LF columns in

Table 3).

DISCUSSION

Our study results show the promising performance of weak supervi-

sion compared to full supervision, surpassing it for participant

extraction. It has to be noticed that weak supervision requires care-

ful LF design consideration to surpass full supervision, primarily due

to the compositional nature of PICO classes. In another study, we

use this weak supervision approach to successfully extend PICO to

PICOS extraction (S—study type) without needing additional anno-

tated “study type” data to quickly power applications.41

Although it is easy to re-purpose the vocabularies for labelling, it

is challenging to map them to the correct PICO targets. A decreased

or stagnant F1 after adding non-UMLS LFs to the UMLS tiers indi-

cates this. Task-specific ReGeX and heuristics were developed upon

inspection of the most frequent terms in the EBM-PICO validation

set. The same procedure was followed across the targets. However,

the performance boost using rule-based LFs was only observed in

the participants and interventions and was detrimental to the out-

comes.

Even though LM improves performance compared to MV, MV

has a higher recall across experiments indicating a good corpus cov-

erage of the LFs (refer to Figure 4). While some studies press on

PICO extraction being a recall-oriented task, this is debated in prac-

tice. In practice, high recall might lead to an accompanying high

false-positive (FP) rate, leading to the reviewers spending more time

to manually weed out FP noise than reading and annotating the

abstract with the entities.23

LM only considers the information encoded in the weak sources

to label phrases from the training text but does not consider the con-

textual information around the phrases. Transformers consider the

contextual information and should generalize beyond the LMs in

theory. It is empirically confirmed by the performance boost that

PubMedBERT brings this on top of the LM for some instances, but

the WS outcomes extraction results refute it.

Table 2. Error distribution and error categories in the analyzed

tokens (�1%) of the EBM-PICO corpus

Error category Participant Intervention Outcome

Repeat mention unmarked 213 227 207

Remain un-annotated 47 59 71

Inconsistency 46 18 85

Punctuation/article 15 23 48

Conjunction connector 30 36 57

Junk 53 79 30

Extra information 80 146 58

Generic mention 70 120 85

Total errors 554 708 641
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Error analysis
We conducted an error analysis on 18 (n¼5291 tokens) out of 200

EBM-PICO gold test set documents to contextualize the weak super-

vision models. Table 4 shows token-level errors divided into either

of the 4 classes: (1) false negative (FN)—if the entire entity that the

token was part of was missed out by the LM, (2) FP—if the entire

entity that the token was part of was falsely recognized as an entity,

(3) boundary error (BE)—if the boundary tokens were missed out,

but otherwise the entity was identified, and (4) overlapping error—

if LM made an error in the nonperipheral tokens of an otherwise

identified entity mention. Nonperipheral tokens are all tokens

except the first and last of the multi-token entity.

In future, we aim to reduce FNs and dig deeper into this cate-

gory. Besides participant disease, tokens representing participant

sample size, age group, gender, and symptoms subclasses went

unrecognized. The LM labeled these FNs with low confidence,

meaning the LFs did encode this information, but the signals were

not strong enough for correct classification. Such FNs could be miti-

gated by weighting LFs for these subclasses. Considerable standard

and unusual abbreviation terms were missed out, especially the ones

encompassed by brackets, for example, metabolic syndrome (MetS),

testicular cancer þ testicular self-examination, and left ventricular

hypertrophy (LVH). The model did not pick some of the standard

abbreviations, for example, LVH and MetS, due to a faulty mapping

of these abbreviations to the incorrect PICO target.

A similar pattern was observed for the intervention (eg,

inference-based approach and radiotherapy) and outcomes class

abbreviations too. The mismapping is now amended. LM did not

capture the abbreviations enclosed in a bracket (eg, “(COPD)”) as

the LFs were not designed to tag these brackets.

Intervention LMs did not recognize common drug names, for

example, Fenofibrate and CP-529414.

In addition, many nonstandardized treatment names went unrec-

ognized, for example, substance abuse prevention program,

inference-based approach, high-concentration contrast agents, and

epigastric impedance. Such terms are absent from UMLS and non-

Figure 3. Cohen’s jnew between the expert annotated EBM-PICO gold test set and EBM-PICO compared to the Cohen’s j for EBM-PICO gold test set annotations.

Table 3. Macro-averaged F1 scores for UMLS, UMLS þ other, and rule-based weak supervision

Target LF source #LF

MV LM WS FS

Fine Corr Fine Corr Fine Corr Fine Corr

P UMLS 3–4 62.13 69.28 64.28 72.22 65.32 73.49 72.99 74.41

þOntology 4 61.72 69.32 64.23 72.18 64.76 72.31

þRules 19–119 63.08 72.06 65.79 75.31 66.73 76.12

I/C UMLS 8–95 59.7 63.94 60.11 64.28 59.17 61.72 83.37 81.06

þOntology 5–101 62.14 66.92 62.83 67.09 67.06 69.76

þRu1es 4–35 58.51 63.45 64.34 68.17 70.27 72.39

O UMLS 5–6 55.79 59.85 58.76 62.36 60.83 63.55 81.2 80.53

þOntology 4–5 56.006 59.64 59.27 62.34 59.55 60.46

þRules 3–5 55.08 59.36 60.9 62.87 60.5 60.39

Note: Underlined values show the best score without manually labelled training data. Bold values show the best overall F1 score in any category. Fine: EBM-

PICO fine-grained annotations; Corr: EBM-PICO fine-grained annotations (EBM-PICO updated). I/C: intervention/comparator; O: outcome; P: participant.
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UMLS vocabularies leading to FNs, so the LFs do not encode them.

Similarly, intervention BEs were the nonidiosyncratic tokens parti-

ally misrecognized because the vocabulary did not encode this par-

tial information.

For example, the term “internal stenting” is partially recognized

because “stenting” is a UMLS concept but not “internal.” Similarly,

in the term “endopyelotomy stent placement,” only the UMLS con-

cept token “stent” was identified. Participant BE FNs were usually

the extra information that described more about the participant’s

disease, for example, the information about disease staging went

unrecognized in the participant’s disease entity (in “advanced

carcinoma,” the word “advanced” was a BE FN). Such entities not

encoded by the LFs contribute to the FNs and could be mitigated by

adding relevant vocabulary and rules.42 It is straightforward to add

vocabulary but challenging to map a semantic group or a vocabulary

to PICO categories, especially for the outcomes class. Our current

source-to-target mapping approach is manual and based on subjec-

tive expert judgment, which an objective algorithm can improve.

A B

Figure 4. Precision and recall across the experiments for the (A) majority vote models (left) and (B) label models (right).

A B

C

Figure 5. The relationship between the number of UMLS partitions and the macro-averaged F1 score for (A) participants target, (B) outcomes target, and (C) inter-

ventions target.
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This mapping could have led to several unexplainable errors, espe-

cially for the outcomes and, to a less extent, for the intervention

class. In addition, it took time to identify semantic categories and

UMLS vocabularies corresponding to the study outcomes pointing

toward the gap in developing one.

CONCLUSION

We adapted weak supervision for PICO spans and developed models

for predicting PICO entities without a hand-labeled corpus. We also

identified errors pertinent to the current PICO benchmark, updated

the dataset, and used both datasets to evaluate the recognition mod-

els. The approach achieves promising performance compared to full

supervision and warrants further research into weak supervision for

compositional entities like PICO. The approach can be extended to

more clinical SR entities without a manually labeled corpus, thereby

being a starting point to overcome the annotation bottleneck. In the

future, we will work on extending the data programming approach

to inspect strategies for objectively mapping ontologies to PICO sub-

classes and experiment using external models like MetaMap as LFs.
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